skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia-Vidal, Francisco J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The manipulation of coupled quantum excitations is of fundamental importance in realizing novel photonic and optoelectronic devices. We use electroluminescence to probe plasmon–exciton coupling in hybrid structures consisting of a nanoscale plasmonic tunnel junction and few-layer two-dimensional transition-metal dichalcogenide transferred onto the junction. The resulting hybrid states act as a novel dielectric environment that affects the radiative recombination of hot carriers in the plasmonic nanostructure. We determine the plexcitonic spectrum from the electroluminescence and find Rabi splittings exceeding 50 meV in the strong coupling regime. Our experimental findings are supported by electromagnetic simulations that enable us to explore systematically and in detail the emergence of plexciton polaritons as well as the polarization characteristics of their far-field emission. Electroluminescence modulated by plexciton coupling provides potential applications for engineering compact photonic devices with tunable optical and electrical properties. 
    more » « less